Thursday, January 16, 2014

ATMOSPHERE - INTRODUCTION #1

History

Earth is believed to have formed about 5 billion years ago. In the first 500 million years a dense atmosphere emerged from the vapor and gases that were expelled during degassing of the planet's interior. These gases may have consisted of:

  • hydrogen (H2)
  • water vapor
  • methane (CH4)  
  • carbon oxides. 
Prior to 3.5 billion years ago the atmosphere probably consisted of carbon dioxide (CO2), carbon monoxide (CO), water (H2O), nitrogen (N2), and hydrogen.

The hydrosphere was formed 4 billion years ago from the condensation of water vapor, resulting in oceans of water in which sedimentation occured.
The most important feature of the ancient environment was the absence of free oxygen. Evidence of such an anaerobic reducing atmosphere is hidden in early rock formations that contain many elements, such as iron and uranium, in their reduced states. 
Elements in this state are not found in the rocks of mid-Precambrian and younger ages, less than 3 billion years old.
One billion years ago, early aquatic organisms called blue-green algae began using energy from the Sun to split molecules of H2O and CO2 and recombine them into organic compounds and molecular oxygen (O2). This solar energy conversion process is known as photosynthesis. Some of the photosynthetically created oxygen combined with organic carbon to recreate CO2 molecules. The remaining oxygen accumulated in the atmosphere, touching off a massive ecological disaster with respect to early existing anaerobic organisms. As oxygen in the atmosphere increased, CO2 decreased.
High in the atmosphere, some oxygen (O2) molecules absorbed energy from the Sun's ultraviolet (UV) rays and split to form single oxygen atoms. These atoms combining with remaining oxygen (O2) to form ozone (O3) molecules, which are very effective at absorbing UV rays. The thin layer of ozone that surrounds Earth acts as a shield, protecting the planet from irradiation by UV light.


The amount of ozone required to shield Earth from biologically lethal UV radiation, wavelengths from 200 to 300 nanometers (nm), is believed to have been in existence 600 million years ago. At this time, the oxygen level was approximately 10% of its present atmospheric concentration. Prior to this period, life was restricted to the ocean. The presence of ozone enabled organisms to develop and live on the land. Ozone played a significant role in the evolution of life on Earth, and allows life as we presently know it to exist. 

REMEMBER:

Formation of the Atmosphere:
The Earth's atmosphere was formed by planetary degassing, a process in which gases like carbon dioxide, water vapor, sulphur dioxide and nitrogen were released from the interior of the Earth from volcanoes and other processes. Life forms on Earth have modified the composition of the atmosphere since their evolution.

Air Pressure:At sea level, the air pressure is about 14.7 pounds per square inch. As your altitude increases (for example, if you climb a mountain), the air pressure decreases. At an altitude of 10,000 feet, the air pressure is 10 pound per square inch (and there is less oxygen to breathe). 

Present-Day Composition


      A.   Nitrogen - 78% - Dilutes oxygen and prevents rapid burning at the earth's surface. Living things need it to make proteins. Nitrogen cannot be used directly from the air. The Nitrogen Cycle is nature's way of supplying the needed nitrogen for living things. 
    B.   Oxygen - 21% - Used by all living things. Essential for respiration. It is necessary for combustion or burning.

    C.   Argon - 0.9% - Used in light bulbs.

    D.   Carbon Dioxide - 0.03% - Plants use it to make oxygen. Acts as a blanket and prevents the escape of heat into outer space. Scientists are afraid that the buring of fossil fuels such as coal and oil are adding more carbon dioxide to the atmosphere.

    E. Water Vapor - 0.0 to 4.0% - Essential for life processes. Also prevents heat loss from the earth.

    F. Trace gases - gases found only in very small amounts. They include neon, helium, krypton, and xenon.